

Long Term Computing Plans 2022 – 2023

KS2

Y
e
a
r

3

Autumn 1 Autumn 2 Spring 1 Spring 2 Summer 1 Summer 2

7 weeks 7 weeks 7 weeks 5 weeks 6 weeks 8 weeks

Overview: TOPIC COVERAGE: Objectives:

Year 3

What is the aim of this

Programme of study?
Skills focus: Coding

To gain confidence and move
from encountering to
mastering a series of learning
aims related to the following
topics:

• Algorithms

• Programming

• Data Representation

• Engagement factors.

• Enquiry based
learning.

• Cross Curricular
(particularly with
subjects which
encounter information
technology, computer
hardware and
processing and digital
communication/safety).

• Pupil Led Learning.

• Developing practical
skills.

• Developing problem
solving and critical
thinking skills.

Autumn
Autumn 1 Autumn 2 Autumn

Algorithms

• Understands what an algorithm is and is able to
express simple linear (non

• branching) algorithms symbolically.

• Understands that computers need precise
instructions.

• Demonstrates care and precision to avoid errors.

• Understands what an algorithm is and is able to
express simple linear (non-branching) algorithms
symbolically.

• Understands that computers need precise
instructions.

• Demonstrates care and precision to avoid errors.

Programming and development

• Executes, checks and changes programs.

• Understands that programs execute by following
precise instructions.

• Executes, checks and changes programs.

• Understands that programs execute by following
precise instructions.

Spring
Algorithms

• Understands what an algorithm is and is able to
express simple linear (non-branching) algorithms
symbolically.

• Understands that computers need precise
instructions.

• Demonstrates care and precision to avoid errors.

• Detects and corrects errors i.e. debugging, in
algorithms.

Programming and development

• Executes, checks and changes programs.

• Understands that programs execute by following
precise instructions.

• Detects and corrects simple semantic errors i.e.
debugging, in programs.

Introduction to algorithms

Learn that programs execute by
following clear instructions.

Understand that programs respond to
inputs to do different things.

Simple inputs

Learn to combine start and input
events to create more advanced apps
and programs using precise
instructions.

Spring
Spring 1 Spring 2

Different sorts of inputs

Learn that programs respond to
different sorts of inputs, and that the
keyboard can be used to control
objects on screen, not just by clicking
them directly.

Buttons and Instructions

Learn that one object can be used to
control another object, e.g. writing code
so clicking a button gives an instruction
to make a lorry move.

Summer
Summer 1 Summer 2

Sequence and Animation

Learn to make things happen in a
sequence, creating simple animations
and simulations.

Conditional Events

Learn to code with 'if statements',
which select different pieces of code to
execute depending on what happens
to other objects.

Summer
Algorithms

• Designs simple algorithms using loops, and
selection i.e. if statements.

• Uses logical reasoning to predict outcomes.

• Detects and corrects errors i.e. debugging, in
algorithms.

Programming and development

• Uses logical reasoning to predict the
behaviour of programs.

• Detects and corrects simple semantic errors
i.e. debugging, in programs.

KS2

Y
e
a
r

4
 a

n
d

 5

Autumn 1 Autumn 2 Spring 1 Spring 2 Summer 1 Summer 2
7 weeks 7 weeks 7 weeks 5 weeks 6 weeks 8 weeks

Overview: TOPIC COVERAGE: Objectives:

Year 4 and 5

What is the aim of this

Programme of study?
Skills focus: Coding

To gain confidence and move
from encountering to
mastering a series of learning
aims related to the following
topics:

• Algorithms

• Programming

• Data Representation

• Engagement factors.

• Enquiry based
learning.

• Cross Curricular
(particularly with
subjects which
encounter information
technology, computer
hardware and

Autumn
Autumn 1 Autumn 2 Autumn

Algorithms

• Designs solutions (algorithms) that use repetition
and two-way selection i.e. if, then and else.

• Uses diagrams to express solutions.

• Uses logical reasoning to predict outputs,
showing an awareness of inputs.

Programming and development

• Creates programs that implement algorithms to
achieve given goals.

• Declares and assigns variables.

Spring
Algorithms

• Designs solutions (algorithms) that use repetition
and two-way selection i.e. if, then and else.

• Uses diagrams to express solutions.

• Uses logical reasoning to predict outputs,
showing an awareness of inputs.

• Designs solutions by decomposing a problem
and creates a sub-solution for each of these
parts.

• Recognises that different solutions exist for the
same problem.

Introduction to variables

Learn how computers use variables to
count things and keep track of what is
going on, then create simple games
which use a score variable.

Repetition and loops

Learn how computers use repetition
and loops to do things again.

Spring
Spring 1 Spring 2

Speed, direction and coordinates

Learn how computers use numbers to
represent things such as how fast
things are moving, and where they
are.

Random Numbers and simulations

Learn how computers can generate
random numbers and how these can
be used in simulations.

Summer
Summer 1 Summer 2

More complex variables

Object properties

processing and digital
communication/safety).

• Pupil Led Learning.

• Developing practical
skills.

• Developing problem
solving and critical
thinking skills.

Learn to use variables in more
complex ways, and to manipulate
inputs to create useful outputs.

Learn more about how computers use
property values and parameters to
store information about objects.

Programming and development

• Creates programs that implement algorithms to
achieve given goals.

• Declares and assigns variables.

• Designs solutions by decomposing a problem
and creates a sub-solution for each of these
parts.

• Recognises that different solutions exist for the
same problem.

Algorithms

• Designs solutions (algorithms) that use
repetition and two-way selection i.e. if, then
and else.

• Uses diagrams to express solutions.

• Uses logical reasoning to predict outputs,
showing an awareness of inputs.

• Designs solutions by decomposing a problem
and creates a sub-solution for each of these
parts.

• Recognises that different solutions exist for
the same problem.

Programming and development

• Creates programs that implement algorithms
to achieve given goals.

• Declares and assigns variables.

• Designs solutions by decomposing a problem
and creates a sub-solution for each of these
parts.

• Recognises that different solutions exist for
the same problem.

• Uses a variable and relational operators within
a loop to govern termination.

Summer
Algorithms

• Designs solutions (algorithms) that use
repetition and two-way selection i.e. if, then
and else.

• Uses logical reasoning to predict outputs,
showing an awareness of inputs.

• Designs solutions by decomposing a problem
and creates a sub-solution for each of these
parts.

• Recognises that different solutions exist for
the same problem.

• Can identify similarities and differences in
situations and can use these to solve
problems (pattern recognition).

Programming and development

• Creates programs that implement algorithms
to achieve given goals.

• Declares and assigns variables.

• Designs solutions by decomposing a problem
and creates a sub-solution for each of these
parts.

• Recognises that different solutions exist for
the same problem.

• Uses a variable and relational operators within
a loop to govern termination.

• Uses a range of operators and expressions
e.g. Boolean, and applies them in the context
of program control.

• Selects the appropriate data types.

KS2

Y
e
a
r

6
 a

n
d

 7

Autumn 1 Autumn 2 Spring 1 Spring 2 Summer 1 Summer 2
7 weeks 7 weeks 7 weeks 5 weeks 6 weeks 8 weeks

Overview: TOPIC COVERAGE: Objectives:

Year 6 and 7

What is the aim of this

Programme of study?
Skills focus: Coding

To gain confidence and move
from encountering to
mastering a series of learning
aims related to the following
topics:

• Algorithms

• Programming

• Data Representation

• Engagement factors.

• Enquiry based
learning.

Autumn
Autumn 1 Autumn 2 Autumn

• author a simple program that outputs information

• input key information accurately

• understand the importance of the order of the
code

• identify symbols to show multiplication (*) and
division (/)

• input correct numbers to create a total

• understand the effect of using quotes within
calculations

• run the input command to prompt an answer from
the user

• understand that they can use input for different
questions

• recognise a variable within the code

• use variables to display the answer from the
input command

• understand that an 'if' command is a way of
coding selection

• use an 'if' command to test an input

Coding Languages- Introduction to
Python

Learn to input information in Python
and generate an output by running the
code.

Learn how to use Python to make
simple calculations and recognise
symbols for multiplication (*) and
division (/).

Learn how inputs and variables work.

Learn how to use selection and inputs.

Learn how to use variables to store
values.

Coding Languages- Python
Graphics

Use script to draw circles and change
their colour.

Learn how to use loops to draw shapes
in Python.

Learn how to program the turtle to
create a simple face using coordinates.

Develop the use of turtle graphics to
affect background colour, line and
width.

Learn how to use loops to create
different images.

• Cross Curricular
(particularly with
subjects which
encounter information
technology, computer
hardware and
processing and digital
communication/safety).

• Pupil Led Learning.

• Developing practical
skills.

• Developing problem
solving and critical
thinking skills.

Learn how to use the ‘if’ command
and the ‘input’ with variables to make
a quiz which keeps score.

• recognise that selection is how passwords work

• demonstrate and explain the 'if' command

• understand why code does not respond when an
input is not recognised

• understand the effect of changing the value of a
variable

• use variables to perform calculations

• modify the name of a variable and understand its
effect

• work with multiple variables to perform more
complex calculations

• create their own quiz, with appropriate scores for
each question

• use a variable to store and increment a value

• demonstrate they understand how the ‘if’
command works understand the code required to
display a score and that the score it is a variable

• use Python to draw different sized circles

• input information to change position and colour

• create their own pattern and explain the code
they used

• understand and explain how the radius of a circle
is used in Python

• To understand what graphics are and how to
code lines and shapes

• explain the commands needed to start
programming the turtle understand the effects of
the commands: forward, right and left know how
to effect the direction or length by entering
numerical values

• understand the importance of sequence in the
code

• explain how to code a loop and know that a loop
is repeated instruction

• demonstrate how to use loops and define angles
to draw a variety of 2D shapes

• understand how to affect the size of shapes
using Python

• use loops to instruct the turtle to carry out a
sequence of repeated commands

• show understanding of how coordinates are
coded in Python using the 'goto' command

• understand how to vary the position, size and
colour of circles using Python

• use a sequence of code to create the desired
outcome

• recognise the commands that relate to
background colour and line width

Spring
Spring 1 Spring 2

Coding Languages- Python:
Random Numbers and Simulations

Learn how to use the random
numbers library in Python

Learn how to combine random
numbers and text in Python using
different commands.

Learn how arrays can be used to
produce phrases within Python.

Use text and arrays in Python to
randomise elements of a story.

Learn how to combine the random
library and the graphics library to
create a variety of effects.

Learn how to combine loops with
random numbers and graphics
libraries to create 2D shapes.

Coding Languages - Python
Functions

Learn how to define and call a function
which uses parameters.

Learn how to define and call a function
which uses parameters to create turtle
graphics.

Learn how to draw a forest scene with
the turtle, using random numbers and a
loop.

Learn how to use the turtle to create a
set of bear faces which are different
sizes and in different positions.

Learn how to use the turtle to create a
random set of emoticons with different
expressions.

Learn how to use the turtle to create a
random set of snowflakes in different
positions on the screen.

Summer
Summer 1 Summer 2

Coding Languages- Intro to HTML

Learn how to get started with HTML by
adding paragraphs of text to a page.

Learn how to add images to a web
page using HTML.

Coding Languages- HTML
Formatting and CSS/HTML Links

Learn how to change the colour of text
using the colour property.

Learn how to change the size and font
of text using the font-size and font-
family properties.

Understand new vocabulary
associated with using HTML, including:
images, jpgs, text, headings and
paragraphs.

Learn how to create a web page using
headings, paragraphs and images.

Learn how to apply knowledge of
HTML to create a web page using
headings, paragraphs and images.

Learn how to apply knowledge of
HTML to create a web page using
headings, paragraphs and images.

Create a simple web page about food
using headings, paragraphs and
images.
.

Learn how to change the
‘background’, ‘margin’ and ‘padding’
properties of different parts of a web
page.

Learn how to apply knowledge of
HTML to make a web page using text,
headings, images and styling.

Learn how to apply knowledge of
HTML to make a web page using text,
headings, images and styling.

Learn more about how web
developers structure their pages and
HTML standards.

Learn how to add links to websites
and pages.

Learn how to make a link using an
image.

Learn how to make a page with
anchor tags and section IDs to
navigate within the page.

Learn how to use div tags within a web
page.

Make a web page combining divs,
images and anchor links.

Create a web page that combines the
use of div tags, styles and anchor
links.

• experiment with coordinates, pixel width and
angles to make their own picture

• combine a variety of commands to create the
desired outcome

• experiment with coding the width of shapes, the
background colour and the thickness of lines to
create a design

• program a loop

• recognise how to create an image using loops

• use appropriate terminology and commands
when explaining their code

• demonstrate the effect of modifying the turtle's
direction within a loop

Spring
• recognise that 'random' is a library of code

• demonstrate how to create a variety of outputs
using random numbers

• select and sequence code correctly to total
randomly generated numbers

• use randomised values in different contexts,
combining numbers and text

• demonstrate how to generate a random number
from a range

• understand how to output a random value from
an array

• demonstrate how to generate random numbers
using a loop

• understand how to add an item to an array

• create phases of text using the random library
with arrays

• add adjectives and nouns to an array to affect the
random choice

• create a four line poem by using a loop

• understand how and when to use more than one
array

• write their own poem by inputting data into arrays
and sequencing the code

• understand the importance of order when writing
code

• write, select and sequence code to create their
own story

• demonstrate the effect of changing an item in an
array

• understand the effect of using the random library
with text

• code the turtle to draw randomised circles

• use a loop to change both the colour and the
direction of turtle

• understand how to define and set RGB (red,
green, blue) values

• demonstrate how to affect the colour and position
of circles using the random library

• demonstrate an understanding of loops, angles
and direction to draw a shape

• write code to randomly affect the position of the
shapes within a loop

• use random numbers to create multi-coloured
shapes

• create a simple program which defines and calls
a function

• use a loop with a parameter to call the same
function more than once

• create a program which uses more than one
parameter

• explain how using functions can makes their
code more efficient

• create a program which draws 20 trees in
random positions

• explain how random numbers have been used in
their code

• write a program which defines and calls a
function to create a bear face

• use random numbers and a loop to create
several bear faces in different positions and of
different sizes.

• write a program which defines and calls a
function to create a set of emoticons with
different expressions

• use random numbers and a loop to create
several emoticons in different positions on screen

• write a program which defines and calls a
function to draw a snowflake

• use random numbers and a loop to create
several snowflakes in random positions on
screen

Summer
• identify opening and closing tags

• add paragraph tags and heading tags to

create a simple web page understand how to

control the size of text using HTML tags

• understand the vocabulary associated with

HTML, including: angle brackets, tags,

paragraphs and headings

• select and sequence code, adding images and

text to create a simple program in HTML

• understand new vocabulary associated with

this lesson including; images, jpgs, graphics

• explain the meaning of tag abbreviation 'img

src' and know what 'PNG' is short for

• use heading tags, paragraph tags and image

tags together to create a web page

• correctly select the appropriate tags to format

the content

• understand associated vocabulary, including:

headings, paragraphs, images and source

• use heading tags, paragraph tags and image

tags together to create a web page

• correctly select the appropriate tags to format

the content

• use heading tags, paragraph tags and image

tags together to create a web page

• correctly select the appropriate tags to format

the content

• present their understanding of terms and

elements learned in HTML Unit 1 to a partner

or class

• create a web page about food, sequencing

code and repeating a sequence to make their

own web page including, headings,

paragraphs and images

• talk about what they KWL (Know, Want,

Learn) from the unit, giving feedback to their

peers

• use search technologies effectively

• understand that styles affect the design of the

web page

• change the colour of text using words

• understand what RGB (red, green, blue) is

• use RGB values to change the colour of text

within a style attribute

• write a style attribute with a colour property

• control the size of text in pixels

• control the font of text

• understand how ‘font-size’ and ‘font-family’

properties are used within a style attribute

• understand how to change the ‘background-

color’ using text and hex values

• change the ‘background-image’ of the web

page

• understand how to use a style section to

control the ‘background-color’, ‘margin’ and

‘padding’ of all paragraph tags

• use headings, paragraphs and images to build

a web page

• control the appearance of text using the ‘font-

family’, ‘font-size’ and colour properties

• control the layout of the web page using the

‘margin’ and ‘padding’ properties

• understand how to affect the appearance of all

paragraph tags using the style section

• understand how to control the appearance of

specific elements using inline styles

• use headings, paragraphs and images to build

a web page

• control the appearance of text using the ‘font-

family’, ‘font-size’ and colour properties

• control the layout of the web page using the

‘margin’ and ‘padding’ properties

• understand how to affect the appearance of all

paragraph tags using the style section

• understand how to control the appearance of

specific elements using inline styles

• understand why HTML has precise standards

and how to implement some of these

• use style sections to more efficiently set colour

and other values

• understand how to use a separate style sheet

• understand how to create absolute links to

another website

• use relative links to make links from one web

page to another in the same site

• make their own index page using links, and

organise it by inserting line breaks

• understand how to turn an image into a link

• create images with relative and absolute links

• use the width attribute of the ‘img’ tag to set

the size of the link area

• use an anchor tag to jump back to the top of

the page they are currently on

• make links to different sections of the same

page

• explain what an anchor tag is, and how to use

one together with an ID

• understand how a div can be used to separate

a page into sections

• add a style selector to adjust the colour and

height of each div tag

• use an anchor link to scroll to a div tag within

the same page

• demonstrate how to select and sequence code

to structure a web page

• explain how to use style selectors to control

the appearance of divs within a web page

• understand how anchor links and IDs work

together

• structure a web page and input their own

content

• apply styling to sections of the page

• demonstrate how to use anchor links to build

navigation within a web page

KS3

Y
e
a
r

8

Autumn 1 Autumn 2 Spring 1 Spring 2 Summer 1 Summer 2
7 weeks 7 weeks 7 weeks 5 weeks 6 weeks 8 weeks

Overview: TOPIC COVERAGE: Objectives:

Year 8

What is the aim of this

Programme of study?

Skills focus:
Programming techniques
and computational
thinking

To gain confidence and
move from encountering to
mastering a series of
learning aims related to the
following topics:

• Algorithms

• Programming

Autumn
Autumn 1 Autumn 2 Autumn

● can understand and apply the fundamental

principles and concepts of computer science,

including abstraction, logic, algorithms and data

representation

● have repeated practical experience of writing

computer programs in order to solve problems

● can evaluate and apply information technology

● are responsible, competent, confident and

creative users of information and communication

technology

● design, write and debug programs that

accomplish specific goals

● use logical reasoning to explain how some simple

algorithms work and to detect and correct errors

in algorithms and programs

Sphero- Course 2 (Theme:
Empathy)

Design & Development:
The activities involved in planning,
creating and evaluating computing
artefacts

Programming languages: Sphero
Draw/Blocks/Text (based on Java
Script)

Makecode Arcade [Intermediate]:
Functions, extensions, animation,
difficulty levels, multi-player, tile
maps

Algorithms:
Being able to comprehend, design,
create and evaluate algorithms

Programming languages:
Creating software to allow computers to
solve problems

Programming languages: Microsoft
MakeCode (Block/Python/Java)

Spring
Spring 1 Spring 2

• Data Representation

• Hardware and
Processing

• Information Technology

• Engagement factors

• Enquiry based
learning.

• Cross Curricular
(particularly with
subjects which
encounter information
technology, computer
hardware and
processing and digital
communication/safety).

• Pupil Led Learning.

• Developing practical
skills.

• Developing problem
solving and critical
thinking skills.

Makecode Arcade [Intermediate]:
Controls, level design, number
generation, dialogue scripts, sprite
arrays

Algorithms:
Being able to comprehend, design,
create and evaluate algorithms

Programming languages:
Creating software to allow computers
to solve problems

Programming languages: Microsoft
MakeCode
(Block/Python/Java)

Makecode Arcade [Intermediate]:
Skills development

Algorithms:
Being able to comprehend, design,
create and evaluate algorithms

Programming languages:
Creating software to allow computers to
solve problems

Programming languages: Microsoft
MakeCode
(Block/Python/Java)

● use sequence, and repetition in programs

● can understand and apply the fundamental

principles and concepts of computer science,

including abstraction, logic, algorithms and data

representation

● have repeated practical experience of writing

computer programs in order to solve problems

● can evaluate and apply information technology

● are responsible, competent, confident and

creative users of information and communication

technology

● design, write and debug programs that

accomplish specific goals, including controlling or

simulating physical systems;

● solve problems by decomposing them into smaller

parts

● use sequence, selection and repetition in

programs; work with ... various forms of input and

output

● use logical reasoning to explain how some simple

algorithms work and to detect and correct errors

in algorithms and programs

Spring
● can understand and apply the fundamental

principles and concepts of computer science,

including abstraction, logic, algorithms and data

representation

● have repeated practical experience of writing

computer programs in order to solve problems

● can evaluate and apply information technology

● are responsible, competent, confident and

creative users of information and communication

technology

● design, write and debug programs that

accomplish specific goals, including controlling or

simulating physical systems;

● solve problems by decomposing them into smaller

parts, use sequence, selection, in programs; work

with various forms of input and output

● use logical reasoning to explain how some simple

algorithms work and to detect and correct errors

in algorithms and programs

● can understand and apply the fundamental

principles and concepts of computer science,

Summer
Summer 1 Summer 2

Sphero- Course 2
(Theme: Storytelling)

Design & Development:

The activities involved in planning,

creating and evaluating computing

artefacts

Programming languages: Sphero
Draw/Blocks/Text (based on Java
Script)

Sphero- Course 2
(Theme: Game Design)

Design & Development:

The activities involved in planning,

creating and evaluating computing

artefacts

Programming languages: Sphero
Draw/Blocks/Text (based on Java
Script)

including abstraction, logic, algorithms and data

representation

● have repeated practical experience of writing

computer programs in order to solve problems

● can evaluate and apply information technology

● are responsible, competent, confident and

creative users of information and communication

technology

● design, write and debug programs that

accomplish specific goals, including controlling or

simulating physical systems; solve problems by

decomposing them into smaller parts

● use sequence, selection and repetition in

programs; work with variables and various forms

of input and output

● use logical reasoning to explain how some simple

algorithms work and to detect and correct errors

in algorithms and programs

Summer
● can understand and apply the fundamental

principles & concepts of computer science.

● practical experience of writing computer

programs to solve problems.

● can evaluate and apply information technology,

including new or unfamiliar technologies

analytically to solve problems

● are responsible, competent, confident and

creative users of information and

communication technology.

● design, use and evaluate computational

abstractions that model the state and

behaviour of real-world problems and physical

systems

● use logical reasoning to compare the utility of

alternative algorithms for the same problem

● use two or more programming languages, at

least one of which is textual, to solve a variety

of computational problems

● understand the hardware and software

components that make up computer systems,

and how they communicate with one another

and with other systems

● understand how instructions are stored and

executed within a computer system

● undertake creative projects that involve

selecting, using, and combining multiple

applications, preferably across a range of

devices, to achieve challenging goals, including

collecting and analysing data and meeting the

needs of known users

● create, re-use, revise and re-purpose digital

artefacts for a given audience, with attention to

trustworthiness, design and usability

● can understand and apply the fundamental

principles & concepts of computer science.

● practical experience of writing computer

programs to solve problems.

● can evaluate and apply information technology,

including new or unfamiliar technologies

analytically to solve problems

● are responsible, competent, confident and

creative users of information and

communication technology.

● design, use and evaluate computational

abstractions that model the state and

behaviour of real-world problems and physical

systems

● use logical reasoning to compare the utility of

alternative algorithms for the same problem

● use two or more programming languages, at

least one of which is textual, to solve a variety

of computational problems

● make appropriate use of data structures [for

example, lists, tables or arrays];

● understand simple Boolean logic [for example,

AND, OR and NOT] and some of its uses in

circuits and programming;

● understand a range of ways to use technology

safely, respectfully, responsibly and securely,

including protecting their online identity and

privacy; recognise inappropriate content,

contact and conduct and know how to report

concerns.

KS3

Y
e
a
r

9

Autumn 1 Autumn 2 Spring 1 Spring 2 Summer 1 Summer 2
7 weeks 7 weeks 7 weeks 5 weeks 6 weeks 8 weeks

Overview: TOPIC COVERAGE: Objectives:

Year 9

What is the aim of this

Programme of study?
Skills focus:
Programming techniques
and computational
thinking

To gain confidence and
move from encountering to
mastering a series of
learning aims related to the
following topics:

• Algorithms

• Programming

• Data Representation

• Hardware and
Processing

• Information Technology

• Engagement factors

• Enquiry based
learning.

• Cross Curricular
(particularly with
subjects which
encounter information
technology, computer
hardware and
processing and digital
communication/safety).

• Pupil Led Learning.

• Developing practical
skills.

• Developing problem
solving and critical
thinking skills.

Autumn
Autumn 1 Autumn 2 Autumn

● can understand and apply the fundamental

principles & concepts of computer science.

● practical experience of writing computer programs

to solve problems.

● can evaluate and apply information technology,

including new or unfamiliar technologies

analytically to solve problems

● are responsible, competent, confident and

creative users of information and communication

technology.

● design, use and evaluate computational

abstractions that model the state and behaviour of

real-world problems and physical systems

● use logical reasoning to compare the utility of

alternative algorithms for the same problem

● use two or more programming languages, at least

one of which is textual, to solve a variety of

computational problems

● understand the hardware and software

components that make up computer systems, and

how they communicate with one another and with

other systems

● understand how instructions are stored and

executed within a computer system

● use two or more programming languages, at least

one of which is textual, to solve a variety of

computational problems

● make appropriate use of data structures [for

example, lists, tables or arrays];

● understand simple Boolean logic [for example,

AND, OR and NOT] and some of its uses in

circuits and programming;

● understand a range of ways to use technology

safely, respectfully, responsibly and securely,

including protecting their online identity and

Sphero- Course 3 (Theme: Brain
Breakers)

Design & Development:

The activities involved in planning,

creating and evaluating computing

artefacts

Programming languages: Sphero
Draw/Blocks/Text (based on Java
Script)

Makecode Arcade [Intermediate]:
Functions, extensions, animation,
difficulty levels, multi-player, tile
maps

Algorithms:
Being able to comprehend, design,
create and evaluate algorithms

Programming languages:
Creating software to allow computers to
solve problems

Programming languages: Microsoft
MakeCode (Block/Python/Java)

Spring
Spring 1 Spring 2

Makecode Arcade [Intermediate]:
Controls, level design, number
generation, dialogue scripts, sprite
arrays

Algorithms:
Being able to comprehend, design,
create and evaluate algorithms

Programming languages:
Creating software to allow computers
to solve problems

Programming languages: Microsoft
MakeCode
(Block/Python/Java).

Makecode Arcade [Intermediate]:
Skills development

Algorithms:
Being able to comprehend, design,
create and evaluate algorithms

Programming languages:
Creating software to allow computers to
solve problems

Programming languages: Microsoft
MakeCode
(Block/Python/Java)

Summer
Summer 1 Summer 2

Sphero- Course 3 (Theme: Missions)

Design & Development:

The activities involved in planning,

creating and evaluating computing

artefacts

Programming languages: Sphero Draw/
Blocks/ Text (based on Java Script)

Sphero- Course 3 (Theme:
Navigation)

Design & Development:

The activities involved in planning,

creating and evaluating computing

artefacts

Programming languages: Sphero Draw
/Blocks/ Text (based on Java Script)

privacy; recognise inappropriate content, contact

and conduct and know how to report concerns.

● undertake creative projects that involve selecting,

using, and combining multiple applications,

preferably across a range of devices, to achieve

challenging goals, including collecting and

analysing data and meeting the needs of known

users

● create, re-use, revise and re-purpose digital

artefacts for a given audience, with attention to

trustworthiness, design and usability

Spring
● can understand and apply the fundamental

principles and concepts of computer science

● have repeated practical experience of writing

computer programs in order to solve problems

● can evaluate and apply information technology

● are responsible, competent, confident and

creative users of information and communication

technology

● design, use and evaluate computational
abstractions that model the state and behaviour of

real-world problems and physical systems

● use logical reasoning to compare the utility of

alternative algorithms for the same problem

● use two or more programming languages, at least

one of which is textual, to solve a variety of

computational problems

● can understand and apply the fundamental

principles and concepts of computer science

● have repeated practical experience of writing

computer programs to solve problems

● are responsible, competent, confident and

creative users of information and communication

technology.

● design, use and evaluate computational

abstractions that model the state and behaviour of

real-world problems and physical systems

● use logical reasoning to compare the utility of

alternative algorithms for the same problem

● use two or more programming languages, at least

one of which is textual, to solve a variety of

computational problems

● understand a range of ways to use technology

safely, respectfully, responsibly and securely,

including protecting their online identity and

privacy; recognise inappropriate content, contact

and conduct and know how to report concerns.

Summer
● can understand and apply the fundamental

principles and concepts of computer science,

including abstraction, logic, algorithms and

data representation

● can evaluate and apply information technology,

including new or unfamiliar technologies,

analytically to solve problems

● understand simple Boolean logic [for example,

AND, OR and NOT] and some of its uses in

circuits and programming

● understand the hardware and software

components that make up computer systems,

and how they communicate with one another

and with other systems

● understand how instructions are stored and
executed within a computer system

● Understand that there are different
programming languages, of which Small Basic
is one.

● Be able to write a basic program by breaking a
task down into instructions.

• Understand what is meant by 'user input'

• Know what is meant by 'variable'

• Be able to link user input with a variable

• Understand how programming languages can

use graphics as well as text

• Explain how variables can be used

• Be able to demonstrate an understanding of

computational thinking

• Be able to respond effectively to feedback

• Be able to use IF and ELSE statements

accurately.

• Be able to break down a process into

instructions which have different outcomes

depending on the input.

• Understand what ELSEIF is used for.

• Understand what is meant by a loop

• Know why loops are used to make programs

more efficient

• Be able to change the number of times a loop

runs and explain what it will do to a program

• Recognise that a while loop can be used as

well as a for loop

• Understand the difference between a while

loop and a for loop

• Be able to explain why a while loop could be

used efficiently

• Recognise that a while loop can be used as

well as a for loop

• Understand the difference between a while

loop and a for loop

• Be able to explain why a while loop could be

used efficiently

KS3

Y
e
a
r

1
0

Autumn 1 Autumn 2 Spring 1 Spring 2 Summer 1 Summer 2
7 weeks 7 weeks 7 weeks 5 weeks 6 weeks 8 weeks

Overview: TOPIC COVERAGE: Objectives:

Year 10

What is the aim of this

Programme of study?
Skills focus: Programming
techniques, algorithms and
problem-solving skills,
computational thinking

To become familiar with how
computer technology work
including:

• Fundamental principles of
computer science including
problem solving, logic,
algorithms and
programming.

• Analyse problems in
computational terms.

Autumn
Autumn 1 Autumn 2 Autumn

• Understand that there are different programming
languages, of which python is one.

• Be able to write a basic program by breaking a
task down into instructions.

• Understand what is meant by 'user input'

• Know what is meant by 'variable'

• Be able to link user input with a variable

• Understand how programming languages can
use graphics as well as text

• Explain how variables can be used

• Be able to demonstrate an understanding of
computational thinking

• Be able to respond effectively to feedback

• Be able to use IF and ELSE statements
accurately.

• Be able to break down a process into
instructions which have different outcomes
depending on the input.

• Understand what ELSEIF is used for.

• Understand what is meant by a loop

Programming Part 1- Sequence

Topics:
Lesson 1: Translators
Lesson 2: Sequence
Lesson 3: Variables
Lesson 4: Input
Lesson 5: Flowcharts
Lesson 6: Randomisers

Programming language: Python

Programming Part 2- Selection

Topics:
Lesson 7: Arithmetic expressions
Lesson 8: Selection
Lesson 9: Selection challenge
Lesson 10: Logical expressions
Lesson 11: Nested selection
Lesson 12: While loops

Programming language: Python

Spring
Spring 1 Spring 2

Programming Part 3- Iteration

Topics:
Lesson 13: Trace tables
Lesson 14: For loops

Programming Part 4- Subroutines

Topics:
Lesson 19: Functions
Lesson 20: Scope

• Practical experience of
writing computer programs
in order to solve problems.

• Engagement factors

• Enquiry based learning.

• Cross Curricular
(particularly with subjects
which encounter
information technology,
computer hardware and
processing and digital
communication/safety).

• Pupil Led Learning.

• Developing practical
skills.

• Developing problem
solving and critical
thinking skills.

Lesson 15: Data validation
Lesson 16 and 17: Pseudocode
Lesson 18: Subroutines

Programming language: Python
Learn how to combine the random
library and the graphics library to
create a variety of effects.

Learn how to combine loops with
random numbers and graphics
libraries to create 2D shapes.

Lesson 21: XOR
Lesson 22: Structured programming
Lesson 23 and 24: Create a program

Programming language: Python

• Know why loops are used to make programs
more efficient

• Be able to change the number of times a loop
runs and explain what it will do to a program

• Recognise that a while loop can be used as well
as a for loop

Spring
• Understand the difference between a while loop

and a for loop

• Be able to explain why a while loop could be
used efficiently

• Recognise that a while loop can be used as well
as a for loop

• Understand the difference between a while loop
and a for loop

• Be able to explain why a while loop could be
used efficiently

• Learners demonstrate knowledge and
understanding of ideas related to computational
thinking.

• Learners demonstrate their ability to recall, select
and communicate their knowledge and
understanding of concepts, issues and
terminology.

• Learners demonstrate their ability to analyse
problems in computational terms to make
reasoned judgement and to design, program, and
evaluate solutions. Identify and use variables,
operators, inputs, outputs and assignments

• Understand and use the three basic
programming constructs used to control the flow
of a program:

• Sequence

• Selection

• IF Statements

• Iteration

• Count and condition-controlled loops: WHILE and
FOR Understand and use basic string
manipulation concatenation only

Summer
• Use different types of data:

Integer

Boolean

Real numbers

Text

Character and string

• Define and use arrays (or equivalent) as

appropriate when solving problems

Summer
Summer 1 Summer 2

Programming Part 5- Strings and
Lists

Topics:
Lesson 25: GUIs
Lesson 26: String handling I
Lesson 27: String handling II
Lesson 28: String handling III
Lesson 29: Arrays and lists
Lesson 30: List methods

Programming language: Python.

Programming Part 6- Dictionaries
and Datafiles

Topics:
Lesson 31: Sense HAT I
Lesson 32: Sense HAT II
Lesson 33: 2D arrays and lists
Lesson 34 and 35: 2D lists challenge
Lesson 36: Records and dictionaries
Lesson 37: Dictionary challenge
Lesson 38: Reading text files

Programming language: Python
Make a web page combining divs,
images and anchor links.

Create a web page that combines the
use of div tags, styles and anchor
links.

• one dimensional arrays (or similar)

• Use the common Arithmetic operators

• Use the common Boolean operators

KS3

Y
e
a
r

1
1

Autumn 1 Autumn 2 Spring 1 Spring 2 Summer 1 Summer 2
7 weeks 7 weeks 7 weeks 5 weeks 6 weeks 8 weeks

Overview: TOPIC COVERAGE: Objectives:

Year 11

What is the aim of this

Programme of study?
Skills focus: Programming
techniques, algorithms and
problem-solving skills,
computational thinking

To become familiar with how
computer technology work
including:

• Fundamental principles of
computer science

• including problem solving,
logic, algorithms and
programming.

• Analyse problems in
computational terms.

• Practical experience of
writing computer programs
in order to solve problems.

• Evaluate both new and
unfamiliar technologies.

• Become responsible,
confident and creative
users of

• computer science related
technologies.

• Understand the
components of digital

Autumn
Autumn 1 Autumn 2 Autumn

• Understand that there are different
programming languages, of which Small
Basic is one.

• Be able to write a basic program by breaking
a task down into instructions.

• Understand what is meant by 'user input'

• Know what is meant by 'variable'

• Be able to link user input with a variable

• Understand how programming languages
can use graphics as well as text

• Explain how variables can be used

• Be able to demonstrate an understanding of
computational thinking

• Be able to respond effectively to feedback

• Be able to use IF and ELSE statements
accurately.

• Be able to break down a process into
instructions which have different outcomes
depending on the input.

• Understand what ELSEIF is used for.

• Understand what is meant by a loop

• Know why loops are used to make programs
more efficient

• Be able to change the number of times a
loop runs and explain what it will do to a
program

• Recognise that a while loop can be used as
well as a for loop

• Understand the difference between a while
loop and a for loop

Sphero- Course 3 (Theme: Brain
Breakers)

Design & Development:

The activities involved in planning,

creating and evaluating computing

artefacts

Programming languages: Sphero
Draw/Blocks/Text (based on Java
Script)

Programming project (20%):
Planning a solution
Developing a solution

Planning a solution

Developing a solution

Testing a solution

Evaluating the success of the solution

Learn key programming ideas and how
to use them in block/ text-based code

Spring
Spring 1 Spring 2

Programming project (20%):
Testing a solution
Evaluating the success of the
solution

Planning a solution

Developing a solution

Testing a solution

Evaluating the success of the solution

Sphero- Course 3 (Theme: Missions)

Design & Development:

The activities involved in planning,

creating and evaluating computing

artefacts

Programming languages: Sphero
Draw/Blocks/Text (based on Java
Script)

systems and how they
communicate with one
another.

• Understand the impact of
digital technology to
individuals in wider society.

• Engagement factors

• Enquiry based learning.

• Cross Curricular
(particularly with subjects
which encounter
information technology,
computer hardware and
processing and digital
communication/safety).

• Pupil Led Learning.

• Developing practical
skills.

• Developing problem
solving and critical
thinking skills.

Learn key programming ideas and
how to use them in block/text based
code

• Be able to explain why a while loop could be
used efficiently

• Recognise that a while loop can be used as
well as a for loop

• Understand the difference between a while
loop and a for loop

• Be able to explain why a while loop could be
used efficiently

Spring
• Learners demonstrate knowledge and

understanding of ideas related to computational
thinking.

• Learners demonstrate their ability to recall, select
and communicate their knowledge and
understanding of concepts, issues and
terminology.

• Learners demonstrate their ability to analyse
problems in computational terms to make
reasoned judgement and to design, program, and
evaluate solutions. Identify and use variables,
operators, inputs, outputs and assignments

• Understand and use the three basic
programming constructs used to control the flow
of a program:

• Sequence

• Selection

• IF Statements

• Iteration

• Count and condition controlled loops: WHILE and
FOR Understand and use basic string
manipulation concatenation only

Summer
• Use different types of data:

Integer

Boolean

Real numbers

Text

Character and string

• Define and use arrays (or equivalent) as

appropriate when solving problems

• one dimensional arrays (or similar)

• Use the common Arithmetic operators

• Use the common Boolean operators

Summer
Summer 1 Summer 2

Sphero- Course 3 (Theme:
Navigation)

Design & Development:

The activities involved in planning,

creating and evaluating computing

artefacts

Programming languages: Sphero
Draw/Blocks/Text (based on Java
Script)

Sphero- Course 3 (Theme: Brain
Breakers)

Design & Development:

The activities involved in planning,

creating and evaluating computing

artefacts

Programming languages: Sphero
Draw/Blocks/Text (based on Java
Script)

