

Upper School Long Term Computing Systems Plans 2022 – 2023

Years 8 - 11

KS3

Y
e
a
r

8
 a

n
d

 9

Autumn 1 Autumn 2 Spring 1 Spring 2 Summer 1 Summer 2
7 weeks 7 weeks 7 weeks 5 weeks 6 weeks 8 weeks

Overview: TOPIC COVERAGE: Objectives:

Year 8 and 9

What is the aim of this
Programme of study?
Subject knowledge

This unit focuses on the

following key areas of

networks:

• Searching

• Threats

• HTML and CSS

• Representing Data
with Images and
Sound

• How Computers Work:
Demystifying
Computation

• Engagement factors.

• Enquiry based
learning.

• Cross Curricular
(particularly with
subjects which
encounter information
technology, computer
hardware and
processing and digital
communication/safety).

• Pupil Led Learning.

• Developing practical
skills.

• Developing problem
solving and critical
thinking skills.

Autumn
Autumn 1 Autumn 2

Autumn
• Recall that a general-purpose computing system

is a device for executing programs

• Recall that a program is a sequence of
instructions that specify operations that are to be
performed on data

• Explain the difference between a general-purpose
computing system and a purpose-built device

• Describe the function of the hardware
components used in computing systems

• Describe how the hardware components used in
computing systems work together in order to
execute programs

• Recall that all computing systems, regardless of
form, have a similar structure (‘architecture’)

• Analyse how the hardware components used in
computing systems work together in order to
execute programs

• Define what an operating system is, and recall its
role in controlling program execution

• Describe the NOT, AND, and OR logical
operators, and how they are used to form logical
expressions

• Use logic gates to construct logic circuits, and
associate these with logical operators and
expressions

• Describe how hardware is built out of increasingly
complex logic circuits

• Recall that, since hardware is built out of logic
circuits, data and instructions alike need to be
represented using binary digits

• Provide broad definitions of ‘artificial intelligence’
and ‘machine learning’

• Identify examples of artificial intelligence and
machine learning in the real world

• Describe the steps involved in training machines
to perform tasks (gathering data, training, testing)

• Describe how machine learning differs from
traditional programming

• Associate the use of artificial intelligence with
moral dilemmas

Developing for the web

National curriculum links

Create, reuse, revise, and repurpose
digital artefacts for a given audience,
with attention to trustworthiness,
design, and usability.

Representations: from clay to silicon

National curriculum links (Computing
programmes of study: Key Stage 3)

Understand how data of various types
(including text, sounds and pictures)
can be represented and manipulated
digitally, in the form of binary digits

Spring
Spring 1 Spring 2

Mobile app development

National curriculum links:

Design, use, and evaluate
computational abstractions that model
the state and behaviour of real-world
problems and physical systems

Use two or more programming
languages, at least one of which is
textual, to solve a variety of
computational problems; make
appropriate use of data structures [for
example, lists, tables, or arrays];
design and develop modular programs
that use procedures or functions

Understand several key algorithms
that reflect computational thinking; use
logical reasoning to compare the utility
of alternative algorithms for the same
problem

Design vector graphics

National curriculum links:

Undertake creative projects that involve
selecting, using, and combining multiple
applications, preferably across a range
of devices, to achieve challenging
goals, including collecting and
analysing data and meeting the needs
of known users

Summer
Summer 1 Summer 2

Computing systems

Cybersecurity

National curriculum links (Computing
programmes of study: Key Stage 3)

Can understand and apply the
fundamental principles and concepts of
computer science, including
abstraction, logic, algorithms and data
representation

Can evaluate and apply information
technology, including new or unfamiliar
technologies, analytically to solve
problems

National curriculum links

 Understand a range of ways to use
technology safely, respectfully,
responsibly, and securely, including
protecting their online identity and
privacy; recognise inappropriate
content, contact, and conduct, and
know how to report concerns

• Explain the implications of sharing program code

• Describe what HTML is

• Use HTML to structure static web pages

• Modify HTML tags using inline styling to improve
the appearance of web pages

• Display images within a web page

• Apply HTML tags to construct a web page
structure from a provided design

• Describe what CSS is

• Use CSS to style static web pages

• Assess the benefits of using CSS to style pages
instead of in-line formatting

• Describe what a search engine is

• Explain how search engines ‘crawl’ through the
World Wide Web and how they select and rank
results

• Analyse how search engines select and rank
results when searches are made

• Use search technologies effectively

• Discuss the impact of search technologies and
the issues that arise by the way they function and
the way they are used

• Create hyperlinks to allow users to navigate
between multiple web pages

• Implement navigation to complete a functioning
website.

• Complete summative assessment

Spring

• Describe what algorithms and programs are
and how they differ

• Recall that a program written in a programming
language needs to be translated in order to be
executed by a machine

• Write simple Python programs that display
messages, assign values to variables, and
receive keyboard input

• Locate and correct common syntax errors

• Describe the semantics of assignment statements

• Use simple arithmetic expressions in assignment
statements to calculate values

• Receive input from the keyboard and convert it to
a numerical value

• Use relational operators to form logical
expressions

• Use binary selection (if, else statements) to
control the flow of program execution

• Generate and use random integers

• Use multi-branch selection (if, elif, else
statements) to control the flow of program
execution

• Describe how iteration (while statements) controls
the flow of program execution

• Use iteration (while loops) to control the flow of
program execution

• Use variables as counters in iterative programs

• Combine iteration and selection to control the flow
of program execution

• Use Boolean variables as flags

• Draw basic shapes (rectangle, ellipse, polygon,
star) with different properties (fill and stroke,
shape-specific attributes)

• Manipulate individual objects (select, move,
resize, rotate, duplicate, flip, z-order)

• Manipulate groups of objects (select,
group/ungroup, align, distribute)

• Combine paths by applying operations (union,
difference, intersection)

• Convert objects to paths

• Draw paths

• Edit path nodes

• Combine multiple tools and techniques to create a
vector graphic design

• Explain what vector graphics are

• Provide examples where using vector graphics
would be appropriate

• Peer assess another pair’s project work

• Improve your own project work based on
feedback

• Complete a summative assessment

Summer

• Explain the difference between data and

information

• Critique online services in relation to data

privacy

• Identify what happens to data entered online

• Explain the need for the Data Protection Act

• Recognise how human errors pose security

risks to data

• Implement strategies to minimise the risk of

data being compromised through human error

• Define hacking in the context of cyber security

• Explain how a DDoS attack can impact users

of online services

• Identify strategies to reduce the chance of a

brute force attack being successful

• Explain the need for the Computer Misuse Act

• List the common malware threats

• Examine how different types of malware

causes problems for computer systems

• Question how malicious bots can have an

impact on societal issues

• Compare security threats against probability

and the potential impact to organisations

• Explain how networks can be protected from

common security threats

• Identify the most effective methods to prevent

cyberattacks

KS3

Y
e
a
r

1
0

 a
n

d
 1

1

Autumn 1 Autumn 2 Spring 1 Spring 2 Summer 1 Summer 2
7 weeks 7 weeks 7 weeks 5 weeks 6 weeks 8 weeks

Overview: TOPIC COVERAGE: Objectives:

Year 9

What is the aim of this
Programme of study?
Skills focus: Skills focus:
Programming techniques
and computational thinking

CR2: The course provides
opportunities to develop
student understanding of
the required content
outlined in each of the big
ideas described in the AP
Course and Exam
Description (CED).

CR3: The course provides
opportunities to develop
understanding of the big

Autumn
Autumn 1 Autumn 2

Autumn
• can understand and apply the fundamental

principles & concepts of computer science.

• practical experience of writing computer programs
to solve problems.

• can evaluate and apply information technology,
including new or unfamiliar technologies
analytically to solve problems

• are responsible, competent, confident and
creative users of information and communication
technology.

• design, use and evaluate computational
abstractions that model the state and behaviour of
real-world problems and physical systems

• use logical reasoning to compare the utility of
alternative algorithms for the same problem

Sphero- Course 3 (Theme: Brain
Breakers)

Design & Development:

The activities involved in planning,

creating and evaluating computing

artefacts

Programming languages: Sphero
Draw/Blocks/Text (based on Java
Script)

Makecode Arcade [Intermediate]:
Functions, extensions, animation,
difficulty levels, multi-player, tile
maps

Algorithms:
Being able to comprehend, design,
create and evaluate algorithms

Programming languages:
Creating software to allow computers to
solve problems

Programming languages: Microsoft
MakeCode (Block/Python/Java)

Spring
Spring 1 Spring 2

ideas, as outlined in the
Course and Exam
Description.

CR4: The course provides
opportunities for students
to develop the skills related
to Computational Thinking
Practice 1: Computational
Solution Design.

CR5: The course provides
opportunities for students
to develop the skills related
to Computational Thinking
Practice 2: Algorithms and
Program Development.

CR6: The course provides
opportunities for students
to develop the skills related
to Computational Thinking
Practice 3: Abstraction in
Program Development.

CR7: The course provides
opportunities for students
to develop the skills related
to Computational Thinking
Practice 4: Code Analysis.

CR8: The course provides
opportunities for students
to develop the skills related
to Computational Thinking
Practice 5: Computing
Innovations.

CR9: The course provides
opportunities for students
to develop the skills related
to Computational Thinking
Practice 6: Responsible
Computing.

CR10: The course provides
a minimum of three
opportunities for students
to investigate different
computing innovations.

Makecode Arcade [Intermediate]:
Controls, level design, number
generation, dialogue scripts, sprite
arrays

Algorithms:
Being able to comprehend, design,
create and evaluate algorithms

Programming languages:
Creating software to allow computers
to solve problems

Programming languages: Microsoft
MakeCode
(Block/Python/Java).

Makecode Arcade [Intermediate]:
Skills development

Algorithms:
Being able to comprehend, design,
create and evaluate algorithms

Programming languages:
Creating software to allow computers to
solve problems

Programming languages: Microsoft
MakeCode
(Block/Python/Java)

• use two or more programming languages, at least
one of which is textual, to solve a variety of
computational problems

• understand the hardware and software
components that make up computer systems, and
how they communicate with one another and with
other systems

• understand how instructions are stored and
executed within a computer system

• undertake creative projects that involve selecting,
using, and combining multiple applications,
preferably across a range of devices, to achieve
challenging goals, including collecting and
analysing data and meeting the needs of known
users

• create, re-use, revise and re-purpose digital
artefacts for a given audience, with attention to
trustworthiness, design and usability

• can understand and apply the fundamental
principles & concepts of computer science.

• practical experience of writing computer programs
to solve problems.

• can evaluate and apply information technology,
including new or unfamiliar technologies
analytically to solve problems

• are responsible, competent, confident and
creative users of information and communication
technology.

• design, use and evaluate computational
abstractions that model the state and behaviour of
real-world problems and physical systems

• use logical reasoning to compare the utility of
alternative algorithms for the same problem

• use two or more programming languages, at least
one of which is textual, to solve a variety of
computational problems

• make appropriate use of data structures [for
example, lists, tables or arrays];

• understand simple Boolean logic [for example,
AND, OR and NOT] and some of its uses in
circuits and programming;

• understand a range of ways to use technology
safely, respectfully, responsibly and securely,
including protecting their online identity and
privacy; recognise inappropriate content, contact
and conduct and know how to report concerns.

• undertake creative projects that involve selecting,
using, and combining multiple applications,
preferably across a range of devices, to achieve
challenging goals, including collecting and

Summer
Summer 1 Summer 2

Sphero- Course 3 (Theme: Missions)

Design & Development:

The activities involved in planning,

creating and evaluating computing

artefacts

Programming languages: Sphero Draw/
Blocks/ Text (based on Java Script)

Sphero- Course 3 (Theme:
Navigation)

Design & Development:

The activities involved in planning,

creating and evaluating computing

artefacts

Programming languages: Sphero Draw
/Blocks/ Text (based on Java Script)

analysing data and meeting the needs of known
users

• create, re-use, revise and re-purpose digital
artefacts for a given audience, with attention to
trustworthiness, design and usability

Spring
● can understand and apply the fundamental

principles & concepts of computer science.
● practical experience of writing computer programs

to solve problems.
● can evaluate and apply information technology,

including new or unfamiliar technologies
analytically to solve problems

● are responsible, competent, confident and
creative users of information and communication
technology.

● design, use and evaluate computational
abstractions that model the state and behaviour of
real-world problems and physical systems

● use logical reasoning to compare the utility of
alternative algorithms for the same problem

● use two or more programming languages, at least
one of which is textual, to solve a variety of
computational problems

● make appropriate use of data structures [for
example, lists, tables or arrays];

● understand simple Boolean logic [for example,
AND, OR and NOT] and some of its uses in
circuits and programming;

● understand a range of ways to use technology
safely, respectfully, responsibly and securely,
including protecting their online identity and
privacy; recognise inappropriate content, contact
and conduct and know how to report concerns.

● undertake creative projects that involve selecting,
using, and combining multiple applications,
preferably across a range of devices, to achieve
challenging goals, including collecting and
analysing data and meeting the needs of known
users

● create, re-use, revise and re-purpose digital
artefacts for a given audience, with attention to
trustworthiness, design and usability

● can understand and apply the fundamental
principles and concepts of computer science

● have repeated practical experience of writing
computer programs in order to solve problems

● can evaluate and apply information technology

● are responsible, competent, confident and
creative users of information and communication
technology

● design, use and evaluate computational
abstractions that model the state and behaviour of
real-world problems and physical systems

● use logical reasoning to compare the utility of
alternative algorithms for the same problem

● use two or more programming languages, at least
one of which is textual, to solve a variety of
computational problems

● can understand and apply the fundamental
principles and concepts of computer science

● have repeated practical experience of writing
computer programs to solve problems

● are responsible, competent, confident and
creative users of information and communication
technology.

● design, use and evaluate computational
abstractions that model the state and behaviour of
real-world problems and physical systems

● use logical reasoning to compare the utility of
alternative algorithms for the same problem

● use two or more programming languages, at least
one of which is textual, to solve a variety of
computational problems

● understand a range of ways to use technology
safely, respectfully, responsibly and securely,
including protecting their online identity and
privacy; recognise inappropriate content, contact
and conduct and know how to report concerns.

Summer

● can understand and apply the fundamental can

understand and apply the fundamental

principles and concepts of computer science,

including abstraction, logic, algorithms and

data representation

● can evaluate and apply information technology,

including new or unfamiliar technologies,

analytically to solve problems

● understand simple Boolean logic [for example,

AND, OR and NOT] and some of its uses in

circuits and programming

● understand the hardware and software

components that make up computer systems,

and how they communicate with one another

and with other systems

● understand how instructions are stored and

executed within a computer system

● Understand that there are different

programming languages, of which Small Basic

is one.

● Be able to write a basic program by breaking a

task down into instructions.

● Understand what is meant by 'user input'

● Know what is meant by 'variable'

● Be able to link user input with a variable

● Understand how programming languages can

use graphics as well as text

● Explain how variables can be used

● Be able to demonstrate an understanding of

computational thinking

● Be able to respond effectively to feedback

● Be able to use IF and ELSE statements

accurately.

● Be able to break down a process into

instructions which have different outcomes

depending on the input.

● Understand what ELSEIF is used for.

● Understand what is meant by a loop

● Know why loops are used to make programs

more efficient

● Be able to change the number of times a loop

runs and explain what it will do to a program

● Recognise that a while loop can be used as

well as a for loop

● Understand the difference between a while

loop and a for loop

● Be able to explain why a while loop could be

used efficiently

● Recognise that a while loop can be used as

well as a for loop

● Understand the difference between a while

loop and a for loop

● Be able to explain why a while loop could be

used efficiently

